導數(shù)求導法則
來源:網(wǎng)絡(luò)整理 2021-05-12 21:25:35
求導的線性:對函數(shù)的線性組合求導,等于先對其中每個部分求導后再取線性組合;兩個函數(shù)的乘積的導函數(shù):一導乘二+一乘二導;兩個函數(shù)的商的導函數(shù)也是一個分式:(子導乘母-子乘母導)除以母平方;如果有復合函數(shù),則用鏈式法則求導。
導數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
不是所有的函數(shù)都有導數(shù),一個函數(shù)也不一定在所有的點上都有導數(shù)。若某函數(shù)在某一點導數(shù)存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數(shù)一定連續(xù);不連續(xù)的函數(shù)一定不可導。
導數(shù)(Derivative),也叫導函數(shù)值。又名微商,是微積分中的重要基礎(chǔ)概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
相關(guān)推薦:
高考數(shù)學知識點匯總
為什么角速度越小越容易滑動?
最新高考資訊、高考政策、考前準備、志愿填報、錄取分數(shù)線等
高考時間線的全部重要節(jié)點
盡在"高考網(wǎng)"微信公眾號